МИНИСТЕРСТВО ОБРАЗОВАНИЯ САРАТОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ САРАТОВСКОЙ ОБЛАСТИ «МАРКСОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ ОП.02 ЭЛЕКТРОТЕХНИКА

специальность: 11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств

КОС для общепрофессиональной дисциплины ОП.02 Электротехника разработан в соответствии с требованиями ФГОС СПО по специальности 11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств, утвержденного приказом Минпросвещения России от 04.10.2021г. №691.

РАССМОТРЕНО на заседании цикловой методической комиссии технического профиля
Протокол № 9, дауа « 15 » 100 2024 г.
Председатель /В. И. Гриднев/

Составитель: Хлебникова Г.Н., преподаватель высшей квалификационной категории ГАПОУ СО «Марксовский политехнический колледж»

Рецензенты:

Внутренний: Гриднев В. И., преподаватель высшей квалификационной категории ГАПОУ СС «Марксовский политехнический колледж»

Внешний: Коваль Людмила Валентиновна, преподаватель Марксовского сельскохозяйственного техникума.

СОДЕРЖАНИЕ

1.ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ	4
2.КРИТЕРИИ ОЦЕНИВАНИЯ УСПЕВАЕМОСТИ	10
3.КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ	16
ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ	
4.КОМПЛЕКТОЦЕНОЧНЫХ СРЕДСТВ	35
ЛЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАНИИ	

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

1.1. Назначение, цель и задачи фонда оценочных средств

Фонд оценочных средств (далее - ФОС) по учебной дисциплине представляет собой комплект методических и контрольных измерительных материалов, оценочных средств, предназначенных для аттестации обучающихся на соответствие их персональных достижений поэтапным требованиям программы подготовки специалистов среднего звена по специальности (текущий контроль успеваемости и промежуточная аттестация).

Фонд оценочных средств по дисциплине ОП.02 Электротехника, разработан согласно требованиям ФГОС СПО и является неотъемлемой частью реализации программы подготовки специалистов среднего звена по специальности 11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств.

Целью фонда оценочных средств является установление соответствия уровня подготовки обучающихся требованиям ФГОС СПО по специальности 11.02.16 Монтаж, техническое обслуживание и ремонт электронных приборов и устройств.

Задачи ФОС:

- контроль и управление процессом приобретения обучающимися необходимых знаний, умений, практического опыта и освоения компетенций, определенных ФГОС СПО;
- контроль и управление достижением целей программы, определенных как набор общих и профессиональных компетенций;
 - оценка достижений обучающихся в процессе обучения с выделением
- положительных / отрицательных результатов и планирование предупреждающих / корректирующих мероприятий;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение инновационных методов обучения;
- достижение такого уровня контроля и управления качеством образования, который обеспечил бы признание квалификаций выпускников работодателями отрасли.

Фонд оценочных средств включает в себя контрольно-оценочные средства (задания и критерии их оценки, а также описания форм и процедур) для проведения текущего контроля успеваемости и промежуточной аттестации (определения качества освоения обучающимися результатов освоения учебной дисциплины (умений, знаний, практического опыта, ПК и ОК).

ФОС обеспечивает поэтапную (текущий контроль) и интегральную (промежуточная аттестация) оценку умений и знаний обучающихся, приобретаемых при обучении по учебной дисциплине, направленных на формирование компетенций.

- 1.1.1. Перечень общих компетенций
- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- OК 02. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности;
- ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях;
 - ОК 04. Эффективно взаимодействовать и работать в коллективе и команде;
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях;
- ОК 09. Пользоваться профессиональной документацией на государственном и иностранном языках.
 - 1.1.2. Перечень профессиональных компетенций
- ПК 1.1. Осуществлять сборку, монтаж и демонтаж электронных приборов и устройств в соответствии с требованиями технической документации.
- ПК 1.2. Осуществлять сборку, монтаж и демонтаж электронных приборов и устройств и их настройку и регулировку в соответствии с требованиями технической документации и с учетом требований технических условий.

Формой промежуточной аттестации по учебной дисциплине является *дифференцированный зачет*.

1.2. Результаты освоения учебной дисциплины ОП.02 Электротехника, подлежащие проверке

В результате аттестации по учебной дисциплине ОП.02 Электротехника, осуществляется комплексная проверка предусмотренных ФГОС СПО по специальности и рабочей программой следующих умений и знаний, практического опыта, а также динамика формирования компетениий:

Коды и наименования результатов обучения	Показатели оценки результата	Формы и методы контроля и оценки результатов обучения
Умения У 1 - выбирать методы рас-	Рационально	- наблюдение за ходом
чета электрических схем и параметров электронных устройств	проводить расчет, используя нужные законы.	выполнение и защита лабораторных работ, - решение задач,
OK 1, OK 2, OK 3, OK 4, OK 7, OK 9 ПК 1.1, ПК 1.2		-устный опрос, -дифференцированный зачет
У 2 - рассчитывать параметры и элементы электрических и электронных устройств ОК 1, ОК 2, ОК 3, ОК 4, ОК 7, ОК 9 ПК 1.1, ПК 1.2	- законы и особенности расчета цепей	выполнение и защита лабораторных работ; -решение задач, - дифференцированный зачет
У 3 - определять основные параметры электрических величин по временным и векторным диаграммам ОК 1, ОК 2, ОК 3, ОК 4, ОК 7, ОК 9 ПК 1.1, ПК 1.2	- расчет и обоснование основных пара- метров и характеристик элементов электрических цепей по опытным данным	лабораторных работ, - решение задач, -устный опрос,
У 4 - рассчитывать простые электростатические цепи	- нахождение общей емкости, заряда , напряжения в электро- статической цепи.	-решение задач, - устный опрос, - дифференцированный зачет
У 5 - рассчитывать магнитную цепь	- использовать для расчета нужные характеристики	-устный опрос, -решение задач, - дифференцированный зачет

	магнитного поля	
У 6 - рассчитывать параметры электрической цепи символическим методом; 3 3 -методы расчета электрической цепи переменного тока символическим методом ОК 1, ОК 2, ОК 3, ОК 4, ОК 7, ОК 9 ПК 1.1, ПК 1.2	записывать и использовать параметры цепей переменного тока комплексными числами и проводить аналогию составления записи алгоритмов решения задач в цепях постоянного и переменного тока	-выполнение и защита лабораторных работы, -решение задач, - дифференцированный зачет
У 7 - рассчитывать электрические цепи с взаимоиндуктивностью 3 4 — теорию электрических цепей со взаимоиндуктивностью ОК 1, ОК 2, ОК 3, ОК 4, ОК 7, ОК 9 ПК 1.1, ПК 1.2	определять одноименные концы и виды соединения обмоток, обосновать какие электромагнитные процессы происходят в цепи со взаимной индуктивностью	- наблюдение за ходом выполнение и защита лабораторных работ, - решение задач, -устный опрос, -дифференцированный зачет
У 8 - настраивать контуры в резонанс, определять основные особенности резонанса и практически применять на практике З 5 - условия получения резонанса в контурах и его практическое применение ОК 1, ОК 2, ОК 3, ОК 4, ОК 7, ОК 9 ПК 1.1, ПК 1.2	анализируя опытные и расчетные данные определять особенности резонанса и при каких условиях в цепях переменного тока наступает резонанс	- наблюдение за ходом выполнение и защита лабораторных работ, - решение задач, -устный опрос, - тестирование, -дифференцированный зачет

У 9 - рассчитывать	анализировать	- наблюдение за ходом
электрические цепи с	несинусоидальную	выполнение и защита
несинусодальным током	периодически	лабораторных работ,
3 6 – правила расчета	изменяющую	-устный опрос,
электрических цепей с	функцию и объяснить	-дифференцированный зачет
несинусоидальным	причины изменения	
напряжением	величины полного со-	
OK 1, OK 2, OK 3, OK 4, OK 7, OK 9 ПК 1.1, ПК 1.2	противления при расчете	
У 10 - анализировать	Особенности	выполнение и защита
переходной процесс в цепях с	изменения напряжения	лабораторной работы,
ре- активными элементами	и тока в цепи при	устный опрос,
37— влияние переходных	коммутации и	дифференцированный зачет
процессов в цепях с	причины, которые	
реактивными элементами на	вызывают этот процесс	
ре-жим работы		
электрической цепи.		

Знания:		
3 1 - физические процессы в	обосновывать явления,	-устный опрос,
электрических цепях	которые происходят в	-письменный опрос,
	электрических цепях и	- дифференцированный зачет
OK 1, OK 2, OK 3, OK 4, OK 7, OK 9	их применение	
ПК 1.1, ПК 1.2		
11K 1.1, 11K 1.2		
32 - методы расчета	-делать анализ	-устный опрос,
электрических цепей	электрической цепи и	-тестовый опрос,
	использовать	- дифференцированный зачет
OK 1, OK 2, OK 3, OK 4,	рациональные	
ОК 7, ОК 9 ПК 1.1, ПК 1.2	способы расчета	
11IX 1.1, 11IX 1.2		

2.КРИТЕРИИ ОЦЕНИВАНИЯ УСПЕВАЕМОСТИ

Контроль и оценка результатов освоения учебной дисциплины ОП.02 Электротехника, осуществляется преподавателем в процессе:

- проведения устного или письменного опроса по теме, разделу; круглого стола, деловой игры, семинара и др.
- выполнения и защиты лабораторных и практических работ;
- тестирования по отдельным темам и разделам;
- анализ выполнения типового задания и т.д.

Устный или письменный опрос проводится на практических занятиях и затрагивает как тематику предшествующих занятий, так и лекционный материал и позволяет выяснить объем знаний студента по определенной теме, разделу, проблеме. Устный опрос в форме собеседования - специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Типовое задание - стандартные задания, позволяющие проверить умение решать как учебные, так и профессиональные задачи. Содержание заданий должно максимально соответствовать видам профессиональной деятельности.

Различают разноуровневые задачи и задания:

- а) ознакомительного, позволяющие оценивать и диагностировать знание фактического материала (базовые понятия, алгоритмы, факты) и умение правильно использовать специальные термины и понятия, узнавание объектов изучения в рамках определенного раздела дисциплины;
- б) репродуктивного уровня, позволяющие оценивать и диагностировать умения синтезировать, анализировать, обобщать фактический и теоретический материал с формулированием конкретных выводов, установлением причинно-следственных связей;
- в) продуктивного уровня, позволяющие оценивать и диагностировать умения, интегрировать знания различных областей, аргументировать собственную точку зрения, выполнять проблемные задания.

Тестирование представляет собой систему стандартизированных заданий, позволяющую автоматизировать процедуру измерения уровня знаний и умений обучающегося, направлено на проверку владения терминологическим аппаратом и конкретными знаниями по дисциплине. Тестирование по теме, разделу занимает часть учебного занятия (10-30 минут), правильность решения разбирается на том же или следующем занятии; частота тестирования определяется преподавателем.

Практические занятия проводится в часы, выделенные учебным планом для отработки практических навыков освоения компетенциями, и предполагают аттестацию всех обучающихся за каждое занятие.

В ходе практического занятия обучающиеся приобретают умения, предусмотренные рабочей программой дисциплины, учатся использовать формулы, и применять различные методики расчета, анализировать полученные результаты и делать выводы, опираясь на теоретические знания. Содержание, этапы проведения конкретного практического занятия или

лабораторной работы, критерии оценки представлены в методических указаниях по выполнению практических работ.

Отчет по практической работе представляется в печатном виде в формате, предусмотренном шаблоном отчета по практической, лабораторной работе. Защита отчета проходит в форме доклада обучающегося по выполненной работе и ответов на вопросы преподавателя.

В случае невыполнения практических заданий в процессе обучения, их необходимо «отработать». Вид заданий, которые необходимо выполнить для ликвидации задолженности определяется в индивидуальном порядке, с учетом причин невыполнения.

Форма проведения текущего контроля успеваемости и промежуточной обучающихся инвалидов аттестации ДЛЯ И лиц с ограниченными возможностями здоровья выбирается c учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.). При необходимости обучающимся ограниченными лицам c возможностями дополнительное предоставляется время ДЛЯ подготовки ответа на дифференцированном зачете.

2.1. Критерии оценивания теоретических знаний

Требования к устным ответам

Результатом проверки уровня усвоения учебного материала является отметка. При оценке знаний обучающихся предполагается обращать внимание на правильность, осознанность, логичность и доказательность в изложении материала, точность использования терминологии, самостоятельность ответа. Оценка знаний предполагает учёт индивидуальных особенностей обучающихся, дифференцированный подход к организации работы.

Критерии оценки устного ответа:

Оценка	Условия, при которых выставляется оценка
Оценка 5 («отлично»)	полно раскрыл содержание материала в объеме, предусмотренном
	программой и учебником; изложил материал грамотным языком в
	определенной логической последовательности, точно используя
	математическую терминологию и символику;
	правильно выполнил рисунки, чертежи, графики, сопутствующие
	ответу;
	показал умение иллюстрировать теоретические
	положения конкретными примерами, применять их в новой
	ситуации при выполнении практического задания;
	продемонстрировал усвоение ранее изученных сопутствующих
	вопросов, сформированность и устойчивость использованных при
	ответе умений и навыков;
	отвечал самостоятельно без наводящих вопросов преподавателя.
	Возможны одна – две неточности при освещении второстепенных
	вопросов или в выкладках, которые обучающийся легко исправил
	по замечанию преподавателя.

Оценка 4 («хорошо»)	В изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию преподавателя. Допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые обучающийся легко исправил по замечанию преподавателя.
Оценка 3 («удовлетворительно»)	Неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала. Имелись затруднения или допущены ошибки в определении понятий и использовании терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов преподавателя. Обучающийся не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме. При проверке теоретического материала выявлена недостаточная сформированность умений и навыков.
Оценка 2 («неудовлетворительно»)	Не раскрыто основное содержание учебного материала; обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов преподавателя. Обучающийся обнаружил полное незнание и непонимание изучаемого материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.

Требования к оформлению доклада

Доклад предоставляется в распечатанном виде, объёмом 3-5 страниц. Текст доклада должен быть представлен в текстовом редакторе Word, шрифт — Times New Roman 14, межстрочный интервал — 1.5 (полуторный). Поля: верхнее - 2, нижнее - 2, левое-3, правое - 1.5.

Доклад должен включать в себя: введение, основную часть, заключение, список литературы (не менее 5 источников).

	Условия, при которых выставляется оценка
Оценка 5 («отлично»)	материал изложен в определенной логической
	последовательности. Тема доклада раскрыта
	полностью.
Оценка 4 («хорошо»)	тема раскрыта, но при этом допущены не существенные
	ошибки, исправленные по
	требованию преподавателя.
Оценка 3	тема раскрыта не полностью, допущена
(«удовлетворительно»)	существенная ошибка.

Оценка 2	содержании доклада не раскрывает рассматриваемую тему,
(«неудовлетворительно»)	обнаружено не понимание основного содержания учебного
	материала

Критерии оценки доклада:

Доклад может быть представлен как доклад-презентация. Необходимо представить 5-7 слайдов. Время доклада -5 минут. Критерии оценки доклада такие же. Дополнительно оценивается презентация.

Оформление слайдов	Параметры	
Стиль	Соблюдать единого стиля оформления.	
Фон	Фон не должен быть слишком темным или	
	ярким,	
	чтобы не отвлекать внимания от содержания слайдов.	
Использование цвета	Слайд не должен содержать более трех	
	цветов.	
	Фон и текст должны быть оформлены	
A 1.1	контрастными цветами.	
Анимационные эффекты	При оформлении слайда использовать возможности	
	анимации.	
	Анимационные эффекты не должны	
	отвлекать внимание от	
Представление информации	содержания слайдов.	
представление информации	Параметры	
Содержание информации	Слайд должен содержать минимум информации.	
	Информация должна быть изложена	
	доступным языком.	
	Содержание текста должно точно	
	отражать этапы выполненной	
	работы.	
	Текст должен быть расположен на слайде так, чтобы	
	его удобно было читать.	
	В содержании текста должны быть ответы	
	на проблемные вопросы.	
7	Текст должен соответствовать теме презентации.	
Расположение информации на странице	Предпочтительно горизонтальное	
	расположение информации.	
	Наиболее важная информация должна располагаться	
	в центре. Надпись должна располагаться под картинкой.	
Размер шрифта	Для заголовка – не менее 24.	
т аэмер шрифта	Для заголовка – не менее 24. Для информации не менее – 18.	
	Лучше использовать один тип шрифта.	
	Важную информацию лучше выделять	
	жирным шрифтом, курсивом,	
	подчеркиванием	
	На слайде не должно быть много	
	текста, оформленного прописными буквами.	
	Teneral, openiment in permental dykbami.	

Выделения информации	На слайде не должно быть много выделенного текста (заголовки, важная информация).
	(заголовки, важная информация).
Объем информации	Слайд не должен содержать большого количества
	информации.
	Лучше ключевые пункты располагать по одному на
	слайде.
Виды слайдов	Для обеспечения разнообразия следует использовать
	разные виды слайдов:
	с таблицами
	- с текстом
	– с диаграммами

Критерии оценивания презентаций:

Оценка	Условия, при которых выставляется оценка
Оценка 5 («отлично»)	выполненная презентация отвечает всем требованиям критериев
Оценка 4 («хорошо»)	в презентации имеются незначительные нарушения или отсутствуют какие-либо параметры
Оценка 3 («удовлетворительно»)	при оценивании половина критериев отсутствует

Требования к оформлению реферата

Реферат предоставляется в распечатанном виде, объёмом 10-15 страниц. Текст реферата должен быть представлен в текстовом редакторе Word, шрифт - TimesNewRoman 14, межстрочный интервал -1.5 (полуторный), в таблицах возможен межстрочный интервал -1 (одинарный), поля: верхнее - 2, нижнее - 2, левое- -3, правое

- 1,5.

Реферат должен включать в себя: содержание, введение, основную часть, заключение, список литературы (не менее 5 источников).

Время на защиту реферата: 5 минут.

Критерии оценивания реферата:

Оценка	Условия, при которых выставляется оценка						
Оценка 5 («отлично»)	материал изложен в определенной логической						
	последовательности. Тема реферата раскрыта						
	полностью.						
Оценка 4 («хорошо») тема реферата раскрыта, при этом допущень							
	существенные ошибки, исправленные						
	по требованию преподавателя						
Оценка 3	тема раскрыта не полностью,						
(«удовлетворительно»)	допущена существенная ошибка						
Оценка 2	при защите реферата обнаружено не понимание						
(«неудовлетворительно»)	основного содержания учебного материала						

Выполнение тестирования

Критерии оценивания:

Оценка	Условия, при которых выставляется оценка							
Оценка 5 («отлично»)	если студент при тестировании дал 85-100% правильных ответов							
Оценка 4 («хорошо»)	если студент при тестировании дал 69- 84% правильных ответов							
Оценка 3 («удовлетворительно»)	если студент при тестировании дал 51- 68% правильных ответов							
Оценка 2 («неудовлетворительно»)	если студент при тестировании дал менее 50% правильных ответов							

2.2. Критерии оценивания практических знаний

Оценка	Критерии оценивания
Оценка 5 («отлично»)	 практическая работа выполнена в установленные сроки (при отсутствии уважительных причин для несвоевременного выполнения работы); все расчеты выполнены в соответствии с методикой и в полном объеме, обозначены единицы измерения всех рассчитываемых показателей; сделан развернутый вывод по итогам выполненных расчетов; работа оформлена аккуратно.
Оценка 4 («хорошо»)	 практическая работа выполнена в установленные сроки (при отсутствии уважительных причин для несвоевременного выполнения работы); расчеты выполнены в полном объеме, но были допущены одна - две негрубые ошибки при выполнении математических действий или не обозначены единицы измерения рассчитываемых показателей; сделан развернутый вывод по итогам выполненных расчетов, однако не все выводы носят аргументированный и доказательный характер; работа оформлена аккуратно
Оценка 3 («удовлетворительно»)	 практическая работа выполнена в неустановленные сроки (при отсутствии уважительных причин для несвоевременного выполнения работы); расчеты выполнены в полном объеме, но при этом были допущены одна – две грубые или три – четыре негрубые ошибки при выполнении математических действий, не обозначены единицы измерения рассчитываемых показателей или работа оформлена неаккуратно, с большим количеством исправлений; не сделан развернутый вывод по итогам выполненных расчетов.

	- работа оформлена неаккуратно.
Оценка 2 («неудовлетворительно»)	 работа не выполнена; при выполнении расчетов обучающийся допускает более двух грубых ошибок или более четырех негрубых, не обозначены единицы измерения рассчитываемых показателей или обозначены неправильно; не сделан вывод по итогам выполненных расчетов. В случае получения оценки «неудовлетворительно» студент обязан выполнить работу заново.

3.КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

Раздел 1. «Электрическое поле»

Тема 1.1. Проводники и диэлектрики в электрическом поле **Устный опрос**

Тема 2.1 Простые и сложные электрические цепи постоянного тока **Устный опрос**

Лабораторная работа №1. Экспериментальная проверка закона Ома **Цели работы:**

- 1 Экспериментальная проверка выполнения закона Ома.
- 2 Определение удельного сопротивления проводника методом вольтметра-амперметра.

Порядок выполнения работы

- 1. Запишите в табл. 1 три длины отрезков проволоки (l_1 , l_2 и l_3), сопротивления которых будут измеряться (задаются преподавателем из интервала 20...50 см).
- 2. Включите прибор нажатием клавиши «сеть», при этом должна заго- реться сигнальная лампочка на лицевой панели.
 - 3. Выберите метод V-mA, установив клавишу 7 в нажатое состояние.
- 4. Выберите схему 2 подключения проволоки, установив клавишу 6 в нажатое состояние.
- 5. Установите указатель (черту) подвижного кронштейна 4 на деление шкалы, соответствующее длине отрезка проволоки l_1 .
- 6. Снимите ВАХ проводника, т. е. зависимость U(I). Для этого при помо- щи ручки 9 последовательно устанавливайте значения силы тока, указанные в табл.

1 и записывайте соответствующие значения напряжения.

- 7. Повторите измерения по пункту 6 для других значений длин отрезка проволоки l_2 и l_3 .
- 8. Выберите схему 1 подключения проволоки, установив клавишу 6 в отжатое состояние. Снимите ВАХ (см. пункт 6) при длине отрезка проволоки l_3 .
- 9. По окончании измерений выключите прибор клавишей «сеть».

Таблица 1

$N_{\underline{0}}$		1 2 3					2				4									
		C	хема	2			Схема 2				Схема 2					Схема 1				
I,			$l_1 =$					$l_2 =$							l_3	=				
мÁ	U,	ΔU ,	ΔI ,	$R_{\rm np}$,	Ε,	U,	ΔU ,	ΔI ,	$R_{\rm np}$,	Ε,	U,	ΔU ,	ΔI ,	$R_{\rm np}$,	Ε,	U,	ΔU ,	ΔI ,	$R_{\rm np}$,	Ε,
	В	В	мА	Ом	%	В	В	мА	Ом	%	В	В	мА	Ом	%	В	В	мА	Ом	%
100																				
125																				
150																				
175																				
200																				
225																				

Обработка результатов эксперимента

- 1. Постройте ВАХ для схемы 2 для трех длин отрезка проволоки в одной системе координат.
- 2. По каждому графику определите сопротивление отрезка проволоки $R_{\rm пр}$ согласно формуле (14). Результаты запишите в табл. 1.
 - 3. Рассчитайте относительную погрешность измерения по формуле (12) и запишите ее значение в процентах в табл. 1.
 - 4. Постройте BAX для схемы 1 на том же координатном поле, что и для схемы 2.
 - 5. По графику определите сопротивление отрезка проволоки $R_{\rm пр}$ согласно формуле (14). Результаты запишите в табл. 1.
 - 6. Рассчитайте относительную погрешность измерения по формуле (9) и запишите ее значение в процентах в табл. 1.
 - 7. Рассчитайте удельное сопротивление проводника для схемы 2 по формуле (6). Результаты запишите в табл. 2.

Таблииа 2

	$N_{\overline{0}}$	d, mm	l, cm	$R_{\rm пp}$, Ом	ρ, Ом∙м	Δρ	$(\Delta \rho)^2$
Схема 2	1						
CXEMa 2	2						
	3						

8. Вычислите среднее значение удельного сопротивления $< \rho >$, доверительный интервал Δ_{ρ} и относительную погрешность измерения E согласно $\Pi pu-$ ложению 1.

Результат работы

1. Сделайте вывод о результатах проверки выполнения закона Ома.

- 2. Сделайте вывод о том, какая схема (схема 1 или 2) в данном эксперименте дает меньшую погрешность измерения сопротивлений $R_{\rm np}$ (см. табл. 1).
 - 3. Запишите значение удельного сопротивления в виде

$$\rho = \langle \rho \rangle \pm \Delta_{\rho}; \qquad E = \dots \%.$$

4. Сравните полученное значение удельного сопротивления с приведенными в таблице (см. *Приложение 2*) и сделайте вывод.

Контрольные вопросы

- 1. Что называется электрическим током? Какой ток называется постоянным?
- 2. Какие условия необходимы для протекания тока в проводнике?
- 3. Запишите закон Ома для участка цепи.
- 4. Что такое электрическое сопротивление проводника и от чего оно зависит?
- 5. Что такое удельное сопротивление проводника и от чего оно зависит?
- 6. Назовите единицы измерения сопротивления и удельного сопротивления в системе СИ.
- 7. С помощью электрических схем поясните метод вольтметраамперметра для изме- рения сопротивления проводника.

Какой схемой следует пользоваться при измерении малых сопротивлений? Больших сопротивлений? Почему?

Лабораторная работа №2. Измерения потенциалов в электрической цепи, построение потенциальной диаграммы

Цель работы: экспериментальное изучение распределения потенциалов в электрической цепи и построение потенциальной диаграммы этой цепи, получить навыки работы с электроизмерительными приборами, умения собирать электрические схемы

ПОДГОТОВКА К РАБОТЕ:

- 1. Повторить разделы курса ТОЭ в которых рассматривается определение потенциалов для электрических цепей постоянного тока.
- 2. Повторить разделы курса ТОЭ в которых рассматривается построение потенциальных диаграмм для электрических цепей постоянного тока.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

- 1. Что называется потенциалом электрического поля?
- 2. Чему равен потенциал электрического поля бесконечно удаленной точки?
- 3. Что характеризует потенциал?
- 4. В каких единицах измеряется потенциал?
- 5. Дать определение потенциальной диаграммы.

ПЕРЕЧЕНЬ ПРИБОРОВ:

- 1. Источник энергии постоянного тока 2 шт.
- 2. Магазин сопротивлений 3 шт.
- 3. Вольтметр -1 шт.
- 4. Амперметр 1 шт
- 5. Комплект соединительных проводов.

ПОРЯДОК ВЫПОЛНЕНИЯ ЭКСПЕРИМЕНТАЛЬНОЙ ЧАСТИ ЛАБОРАТОРНОЙ РАБОТЫ:

- 1. Собрать электрическую схему цепи.
- 2. Установить на магазинах сопротивлений заданные преподавателем значения сопротивлений R1, R2, R3.
- 3. Предъявить собранную схему для проверки преподавателю.
- 4. Опыт №1. встречное включение источников энергии.) Измерить с помощью вольтметра потенциалы точек A, Б, B, Г, напряжение UБВ и записать измеренные значения в таблицу.
- 5. опыт №2. сонаправленное включение источников энергии. Измерить с помощью вольтметра потенциалы точек A, Б, B, Г, напряжение UБВ и записать измеренные значения в таблицу.

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ:

- 1. Результаты измерений представить в виде таблицы.
- 2. Рассчитать ток I по 2 закону Кирхгофа(составить уравнение по 2 з-у Кирхгофа)
- 3. Рассчитать потенциалы
- 4. По расчетным данным для двух опытов построить в масштабе потенциальные диаграммы для контуров АБВГДА.
- 5. Составить энергетический баланс мощностей для обоих опытов.
- 6. Сделать вывод.

Лабораторная работа №3. Неразветвленная электрическая цепь с переменным сопротивлением приемника энергии

1. Цель занятия

- 1.1. Изучить режимы работы источников электрической энергии, делая анализ соотношения между ЭДС и напряжением на зажимах каждого источника ЭДС.
- 1.2. Определить внутреннее сопротивление источников.
- 1.3. Измерить потенциалы точек электрической цепи и сравнить их с расчетными.
- 1.4. Построить потенциальную диаграмму.

2. Порядок выполнения работы

- 2.1. Ознакомиться с приборами, заполнить таблицу технических данных приборов.
- 2.2. Собрать электрическую цепь. Пригласить преподавателя для проверки схемы.
- 2.3. Включить стенд и вольтметром поочередно на каждом источнике замерить ЭДС (В1 выключить) и напряжение на зажимах источника U (В1 включить). Результаты занести в табл. 1.

Таблица 1

	И	змерить	В	ычислит	Ь			
E_1	E_2	E_3	U_1	U 2	U_3	R ₀₁	R ₀₂	R ₀₃
В	В	В	В	В	В	Ом	Ом	Ом

2.4. Один конец вольтметра подключить к точке 1 (принимаем V1 = 0), а другой конец поочередно подключаем к точкам 2, 3, 4, 5, 6, 7, 8, при этом каждый раз вольтметр будет показывать потенциал соответствующей точки. Значения всех потенциалов занести в табл. 2.

Таблина 2

	Измерить											Выч	исли	ІТЬ			
I	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	I	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8
A	В	В	В	В	В	В	В	В	A	В	В	В	В	В	В	В	В

3.Расчетная часть

- 3.1. Рассчитать внутреннее сопротивление источников, пользуясь формулами: R0 = (E U) / I для источника, работающего в режиме генератора.
- R0 = (U-E)/I для источника, работающего в режиме потребителя электроэнергии. Результаты расчетов записать в табл. 1.

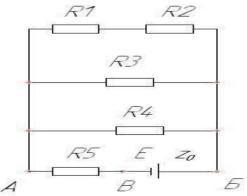
3.2.Пользуясь значениями ЭДС E1 = E2 = 5 B, E3 = 20 B и их внутренними сопротивлениями, а также известными величинами всех резисторов:

R1 = 100 Ом, R2 = 35 Ом, R3 = 75 Ом, R5 = 30 Ом, включенных в цепь, рассчитать ток в цепи и потенциалы всех точек относительно точки 1 (V1 = 0) при обходе электрической цепи против тока. Результаты расчетов занести в табл. 2. Сравнить полученные результаты с опытными данными.

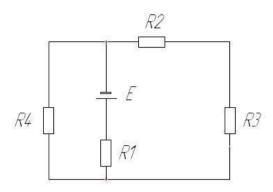
4.Контрольные вопросы.

- 1.1. Какие режимы работы источников вам известны?
- 1.2. Как измерить ЭДС источника и напряжение на его зажимах?
- 1.3. Запишите формулу закона Ома и проанализируйте ее (рис. 2, схемы 1 и 2).
- 1.4. Как определить направление тока в неразветвленной цепи, имеющей несколько источников (рис. 2, схемы 1 и 2)?
- 1.5. Что такое потенциал точки?
- 1.6. Как изменяются потенциалы точек на участке с ЭДС?
- 1.7. Как изменяются потенциалы точек на участке с сопротивлением?
- 1.8. Как определить направление тока в неразветвленной цепи, имеющей несколько ЭДС.
- 1.9. Можно ли определить направление тока на резисторе, если известны потенциалы на его концах?
- 1.10. Как следует при построении потенциальной диаграммы откладывать сопротивления?

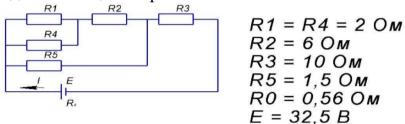
Письменная работа.

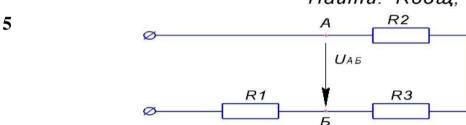

По теме сформированы 6 вариантов.

Время на письменную работу - 45 минут.


При оценке ответа используется пятибалльная система.

Определить общее сопротивление и токи электрической цепи.


 $1.\,\mathrm{B}$ заданной цепи определить напряжение UAБ; UБВ и токи во всех ветвях, если R1 = 15 Ом; R2 = 25 Ом; R3 = 40 Ом; R4 = 20 Ом; R5 = 24,8 Ом; ro = 0,2 Ом, E = 42 В.


 $2.\,\mathrm{B}$ схеме ток $\mathrm{I2}=6\,\mathrm{A}$ и сопротивление каждого резистора 6 Ом. Определить входной ток и напряжение питания — U.

4. Определить общее сопротивление и найти все токи

Найти: Кобщ; І.

В электрической цепи U = 120 В $U_{Ab} = 75 \text{ B}$, $R_{1} = 90 \text{ OM}$, $R_{2} = R_{3}$ Определить падение напряжения U_{1} , U_{2} и U_{3} , а также сопротивление R_{2} .

Тема 2.2. Расчет электрических цепей постоянного тока

Устный опрос

Опрос проводится во время занятия, каждый студент отвечает методику расчета цепи.

Решение задач

Лабораторная работа №4. Выполнение последовательного и параллельного соединения в схеме из резисторов

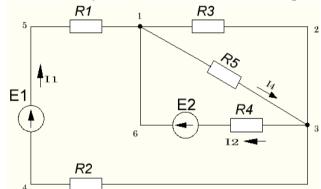
Лабораторная работа №5. Изучение смешанного соединения в схеме из 4-х резисторов

Лабораторная работа №6. Изучение законов Кирхгофа для многоконтурных цепей

Лабораторная работа №7. Опытная проверка принципа наложения токов **Лабораторная работа №8.** Преобразование треугольника сопротивлений в эквивалентную звезду

Лабораторная работа №9. Проведение опытной проверки метода эквивалентного генератора

Тестовый опрос.


Сформировано 4 варианта по темам расчет цепей постоянного тока.

Отводится время 25 минут.

При оценке ответа используется пятибалльная система.

Вариант 1

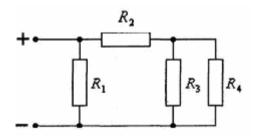
1. Сколько узлов имеет данная электрическая схема?

1 узел; 2 узла; 3 узла; 4 узла; 5 узлов; 6 узлов

Вопрос 2

Сколько различных токов проходит в данной

схеме?

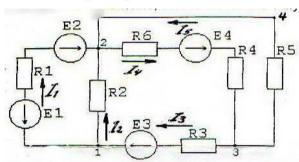

1 ток; 2 тока; 3 тока; 4 тока; 5 токов; 6 токов

3. Определите уравнение, составленное по 1-му закону Кирхгофа для узла 1

$$I1+I2+I3+I4=0$$
; $I1+I3-I2+I4=0$; $I1+I2-I3-I4=0$; $I1-I2-I3-I4=0$; $I1+I2-I3+I4=0$; $I4+I2-I3-I1=0$

4. Определите уравнение , составленное по 2-му закону Кирхгофа для контура 12361

5. Найдите для данной схемы общее сопротивление (Rобщ).

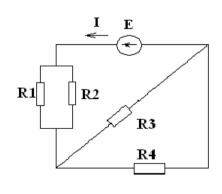


$$\frac{(R_2 + R_3)R_4}{R_2 + R_3 + R_4} + R_1 \qquad \frac{R_1 \cdot R_3}{R_1 + R_3} + R_2 + R_4 \qquad R_1 + R_2 + \frac{R_3 \cdot R_4}{R_3 + R_4}$$

$$\frac{\left(\frac{R_3 \cdot R_4}{R_3 + R_4} + R_2\right)R_1}{\frac{R_3 \cdot R_4}{R_3 + R_4} + R_2 + R_1}$$

Вариант 2

- 1. Сколько узлов имеет данная электрическая схема?
- 2 узла 3 узла 5 узлов
- 4 узла 6 узлов
- 2. Сколько различных токов проходит в данной схеме?
- 1 ток 2 тока 3 тока
- 4 тока 5 токов 6 токов
- 3. Определите уравнение, составленное по 1-му закону Кирхгофа для узла 2.

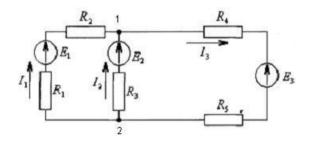


I1+I4+I3=0

4. Определите уравнение, составленное по 2-му закону Кирхгофа для контура 12431.

E4-E3=I4R4+I5R5-I2R2-I3R3 E3=I2R2+I5R5+13R3 E3+E4=I2R2+I4R6+I4R4-I5R5+I3R3 E3=I3R3+I2R2-I5R5

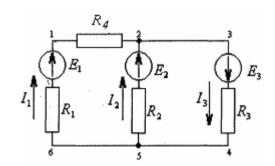
5. Найдите для данной схемы общее сопротивление



$$R_{oбiu} = \frac{R_1 \cdot R_2}{R_1 + R_2} + R_3 + R_4$$
1.
$$R_{oбiu} = \frac{R_1 \cdot R_2}{R_1 + R_2} + \frac{R_3 \cdot R_4}{R_3 + R_4}$$

$$R_{oбiu} = \frac{R_1 \cdot R_2 \cdot R_3}{R_1 + R_2 + R_3} + R_4$$
3.
$$R_{oбiu} = \frac{R_1 \cdot R_2 \cdot R_3}{R_1 + R_2 + R_3} + \frac{R_3 \cdot R_4}{R_3 \cdot R_4}$$
4.

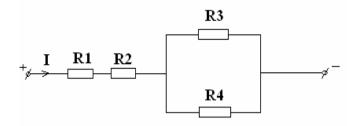
Вариант 3


- 1. Сколько узлов имеет данная электрическая схема?
- узел 1 3 узла 5 узлов
- -узла 2 4 узла 6 узлов
- 2. Сколько различных токов проходит в данной схеме?
- 1 ток 2 тока 3 тока
- 4 тока 5 токов 6 токов
- 3. Составьте для узла 1 уравнение по первому закону Кирхгофа.

Ответ:

$$I_1 - I_2 = I_3$$
 $I_1 - I_2 = 0$ $I_1 + I_2 - I_3 = 0$ $+ I_1 - I_2 + I_3 = 0$

4. Составьте для контура 123456 уравнение по второму закону Кирхгофа.

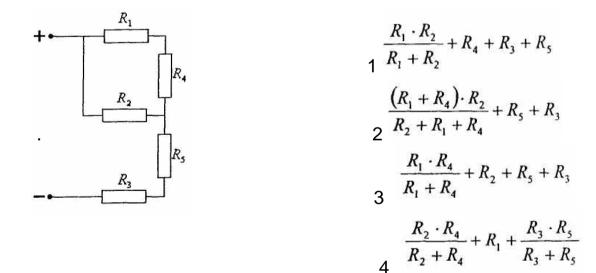

$$E_{1} + E_{2} - E_{3} = I_{1} \cdot R_{1} + I_{2} \cdot R_{2} - I_{3} \cdot R_{3}$$

$$E_{1} + E_{3} = I_{1} \cdot R_{1} + I_{3} \cdot R_{3} + I_{1} R_{4}$$

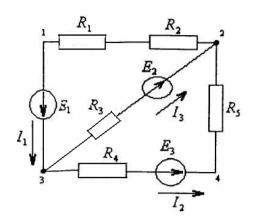
$$E_{1} - E_{3} = I_{1} \cdot R_{1} - I_{3} \cdot R_{3}$$

$$E_{1} - E_{2} - E_{3} = I_{1} \cdot R_{1} - I_{2} \cdot R_{2} - I_{3} \cdot R_{3} + I_{1} R_{4}$$

5. Определить эквивалентное сопротивление.



Ответ:

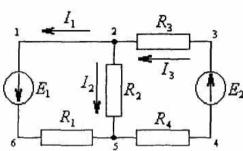

$$R_{oбiu} = R \cdot R_{1} + \frac{R_{3} \cdot R_{4}}{R_{3} + R_{4}}$$
1.
$$R_{oбiu} = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}} + \frac{R_{3} \cdot R_{4}}{R_{3} \cdot R_{4}}$$
2.
$$R_{oбiu} = R_{1} + R_{2} + \frac{R_{3} \cdot R_{4}}{R_{3} + R_{4}}$$
3.

Вариант 4

1. Определить эквивалентное сопротивление цепи.

2. Найти уравнение по первому закону Кирхгофа для узла 3.

Ответ:

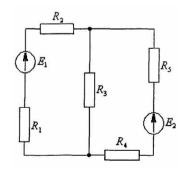

$$1^{I_1-I_3+I_2}=0$$
 $2^{I_3}=I_2=I_1$ $3^{I_1}=I_3+I_2$ $4^{I_3}=I_2-I_1$

$$2^{I_3} = I_2 = I_1$$

$$3^{I_1} = I_3 + I$$

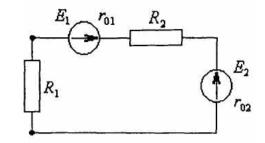
$$4^{I_3} = I_2 - I_1$$

3. Найти уравнение по 2-му закону Кирхгофа для контура 1234561.


$$1 E_{1} + E_{2} = I_{1} \cdot R_{1} + I_{3} \cdot R_{4} + I_{3} \cdot R_{3}$$

$$2 E_{1} - E_{2} = I_{1} \cdot R_{1} + I_{3} \cdot R_{4} + I_{2} \cdot R_{3}$$

$$3 E_{1} - E_{2} = I_{3} \cdot R_{2} + I_{2} \cdot R_{2} + I_{1} \cdot R_{3} + I_{3} \cdot R_{4}$$


$$4 E_{1} + E_{2} = I_{3} \cdot (R_{4} + R_{3}) + I_{2} \cdot R_{2} + I_{1} \cdot R_{1}$$

4. Сколько различных токов имеет данная цепь?

Ответ 1 2 3 4 5

5. Как определить ток для данной цепи, если $E_1 > E_2$?

Ответ:

$$I = \frac{E_1 + E_2}{R_1 + R_2 + r_{01} + r_{02}} \label{eq:Intersection}$$
 1.

$$I = \frac{E_1 - E_2}{R_1 + R_2 + r_{01} - r_{02}}$$

$$I = \frac{E_1 - E_2}{R_1 + R_2 + r_{01} + r_{02}}$$

$$I = \frac{E_2 - E_1}{R_1 + R_2 + r_{02} - r_{01}}$$

Ключ

B1	2	4	3	3	2
B2	3	5	1	4	2
В3	2	3	3	2	3
B4	2	3	1	3	3

Раздел 3. Магнитное поле

Тема 3.1. Магнитные цепи

Устный опрос

Опрос проводится во время занятия, каждый студент опрашивается по 3-вопросам.

Тема 3.2. Расчет магнитных цепей

Устный опрос

Опрос производится во время занятия, каждый студент опрашивается по3 вопросам.

Тема 3.3. Электромагнитная индукция и ЭДС самоиндукции

Письменная работа по разделу 3 «Магнитное поля».

Проводится в 2-х вариантах, каждый включает 7 теоретических вопросов, на работу отводится 45 минут.

Вариант 1 - вопросы 1, 3, 5, 7, 9, 11, 13.

Вариант 2 - вопросы 2, 4, 6, 8, 10, 12, 14.

- 1. Чем образуется магнитное поле и его особенность.
- 2. Характеристики магнитного поля.
- 3. Закон Гаусса и область его применения.
- 4. Закон полного тока и область его применения.
- 5. Что такое конденсатор, его характеристика и свойства.
- 6. Что такое индуктивность, ее характеристика и свойства.
- 7. Два конденсатора включены последовательно, чему равна общая емкость. Нарисуйте схему.
- 8. Два конденсатора включены параллельно, чему равна общая емкость. Нарисуйте схему.
- 9. В чем заключается явление электромагнитной индукции.
- 10. Правило Ленца.
- 11. Причина появления эдс самоиндукции и от чего она зависит.
- 12. Причина появления эдс взаимоиндукции и от чего она зависит.

Раздел 4. Электрические цепи переменного тока

Тема 4.1. Основные сведения о синусоидальном эл. токе

Устный опрос

Решение задач

Опрос проводится во время занятия, каждый студент опрашивается по 3 вопросам.

Тема 4.2. Элементы и параметры электрических цепей переменного тока. Расчет цепей.

Устный опрос

Анализ соотношений в цепях переменного тока при использовании векторного изображения и записи с помощью комплексных чисел

Опрос проводится во время занятия, каждый студент опрашивается по 5 вопросам.

Решение задач

Лабораторная работа № 10 Исследование цепи переменного тока с идеальной катушкой индуктивности

Лабораторная работа № 11 Исследование реальной катушки индуктивности с последовательным соединением

элементов схемы замещения

Лабораторная работа № 12 Исследование реальной катушки индуктивности с параллельным соединением элементов схемы замещения

Лабораторная работа №13 Исследование реального конденсатора с последовательным соединением элементов схемы замещения

Лабораторная работа №14 Исследование реального конденсатора с параллельным соединением элементов схемы замещения

Тема 4.3. Резонанс в электрических цепях

Устный опрос

Решение задач

Опрос производится во время занятия, каждый студент опрашивается по 3 вопросам.

Лабораторная работа №15.Исследование цепи переменного тока с последовательным соединением активного и реактивного элементов

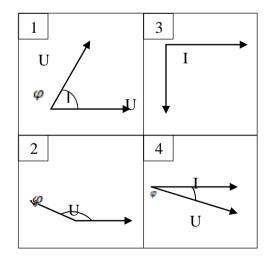
Лабораторная работа №16.Исследование цепи переменного тока с параллельным соединением активного и реактивного элементов

Лабораторная работа №18.Исследование цепи переменного тока с параллельным соединением активного и реактивного элементов

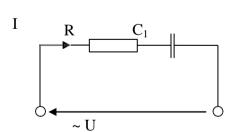
Лабораторная работа №19.Измерение параметров индуктивно связанных катушек **Тестовый опрос.**

Сформировано 2 варианта по темам 4.3 и 4.4. Электрические цепи переменного тока.

Отводится время 25 минут.


При оценке ответа используется пятибалльная система

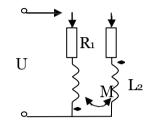
Вариант № 1


1. Укажите уравнение входного напряжения при соотношении $X_L > X_C$, если $i = Im \sin wt$

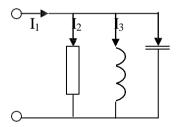
1	$U = Um \sin wt$	2	$U = Um \sin(wt - 90^\circ)$
3	$U = Um \sin(wt + 90^\circ)$	4	$U = Um\sin(wt + \varphi)$
5	U = Um	sin($(wt - \varphi)$

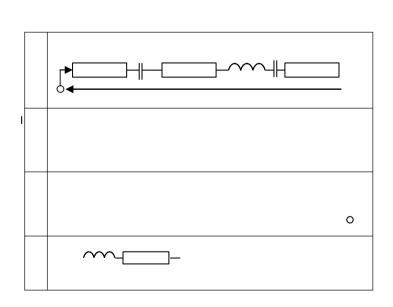
2. Какая векторная диаграмма соответствует цепи.

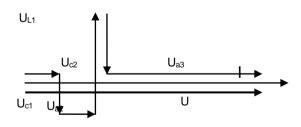
I


3. Укажите формулу полного напряжения для цепи RL.

1	$U = Ua + U_L$
---	----------------


2	$U = I \cdot R$
3	$U = I \cdot X_L$
4	$U = \sqrt{U_a^2 + U_L^2}$
5	$U = \sqrt{U_a^2 - U_L^2}$


4. Какое уравнение напряжения соответствует для второй $_{\rm I}$ ветви R2 L2.


1	• • •
	$U = I_2R_2 + I_2 L_2 + I_2M$
2	• • •
	U=I2R2+jI2wL2+jI2wM
3	• • •
	U = I2R2 + j I2 wL2 - j I1 wM

5. Какой цепи соответствует данная векторная диаграмма

Вариант № 2

1. Укажите, чему равна добротность последовательного контура RLC.

1	$Q = \frac{\sqrt{L/_C}}{R}$	2	$Q = \frac{R}{Z_{\text{волн.}}}$	3	$Q = \frac{X_L}{R}$	4	$Q = \frac{X_L X_C}{Z_B}$
---	-----------------------------	---	----------------------------------	---	---------------------	---	---------------------------

2. Определите общий ток I, если U=10B, R=10Ом, X_L =5 Ом, X_C =10 Ом

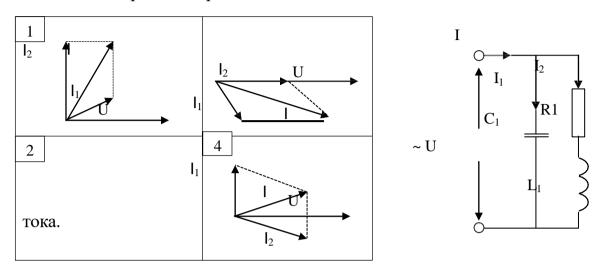
1	4 A
2	2 A
3	$\sqrt{2}$

3. При резонансе напряжений в неразветвленной цепи RLC (Q – добротность контура)

1	$U_a = U_L = U_c = U_{\text{BX.}}$
2	$U_L=U_c=QU_{\scriptscriptstyle BX}$
3	$U_L = 0, U_c = 0$
4	$U_L=U_c=U_{\scriptscriptstyle BX}/Q$

4. Запишите формулу модуля полного сопротивления последовательной цепи RLC

$$R$$
 L C


$$_{1}Z=R+X_{L}+X_{C}$$

$$Z = \sqrt{R^2 + X_L^2 + X_C^2}$$

2.
$$Z = \sqrt{R^2 + X_L^2 + X_C^2}$$

3. $Z = \sqrt{R^2 + (X_L - X_C)^2}$

$$\sqrt{R^2 + X_L^2 - X_C^2}$$

5. Какая векторная диаграмма относится к данной схеме?

Тема 4.4. Символический метод расчета электрических цепей переменного

Устный опрос

Опрос проводится во время занятия, каждый студент опрашивается по 3 вопросам.

Лабораторная работа №17. Исследование электрической цепи переменного тока с последовательным соединением катушки индуктивности и конденсатора

Тема 4.5. Трехфазные цепи

Устный опрос

Опрос проводится во время занятия, каждый студент опрашивается по 3 вопросам.

Лабораторная работа №20.Исследование трехфазной цепи при соединении потребителей «звездой»

Лабораторная работа №21.Исследование трехфазной цепи при соединении потребителей «треугольником»

Лабораторная работа №22.Изучение переходных процессов заряда и разряда конденсатора.

Тема 4.6. Переходные процессы в электрических цепях

Устный опрос

Опрос проводится во время занятия, каждый студент опрашивается по 2-3 вопросам.

Решение задач

Тема 5.1. Пассивные и активные электронные цепи. Фильтры

Устный опрос

Опрос проводится во время занятия, каждый студент опрашивается по 2-3 вопросам.

Решение задач

4.КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

4.1. Назначение

Контрольно-оценочное средство предназначено для промежуточной аттестации по учебной дисциплине «Электротехника» оценки знаний и умений аттестуемых, а также элементов ПК и ОК.

4.2.Форма и условия аттестации

Аттестация проводится в виде дифференцированного зачета по завершению освоения всех тем учебной дисциплины, работы и практические задания по данной дисциплине и при положительных результатах текущего контроля. К промежуточной аттестации по дисциплине допускаются студенты, полностью выполнившие все лабораторные работы.

Контрольно-оценочные средства для проведения промежуточной аттестации доводятся до сведения студентов не позднее, чем за месяц до окончания изучения дисциплины. На основе разработанного и объявленного обучающимся перечня теоретических вопросов и практических задач, рекомендуемых для подготовки к экзамену, составляются экзаменационные билеты, содержание которых до обучающихся не доводится. Комплект заданий по своему содержанию охватывает все основные вопросы пройденного материала по предмету. Число вариантов заданий разрабатывается больше числа студентов в группе.

ПА проводится в специально подготовленных помещениях. На выполнение задания отводится не более 2 академических часов. В случае неточных и неполных ответов обучающего на вопросы экзаменационного билета преподаватель вправе задать дополнительные вопросы из перечня включенных в оценочное средство в форме блиц-опроса (без предварительной подготовки).

4.3.Инструкция по выполнению работы

Студент получает бланк теста, который состоит из 40 заданий. К некоторым заданиям теста даны варианты ответов, из которых только один правильный; встречаются задания, в которых необходимо установить соответствие.

Задания выполнять рекомендуется в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у вас останется время, вы можете вернуться к пропущенным заданиям. Время выполнения работы — 90 минут.

4.4.Оценочные средства

Тестовой задание для оценки освоения дисциплины ОП.02 Электротехника

Вопрос 1. Какую зависимость устанавливает Закон Ома?

- а) зависимость сопротивления от напряжения.
- б) зависимость заряда от напряжения.
- в) зависимость тока от напряжения.
- г) зависимость сопротивления от тока.

Вопрос 2. Какой из перечисленных элементов не пропускает через себя постоянный ток:

- а) потенциометр.
- б) резистор.
- в) катушка.
- г) конденсатор

Вопрос 3. Что такое электрический ток:

- а) графическое изображение элементов.
- б) это устройство для измерения ЭДС.
- в) упорядоченное движение заряженных частиц в проводнике.
- г) беспорядочное движение частиц вещества

Вопрос 4. В чем измеряется емкость конденсатора:

- a) Вт.
- б) Ом.
- в) Гн.
- г) Ф

Вопрос 5. Реальный источник постоянного напряжения отличается от идеального тем что:

- а) внутреннее сопротивление подключается параллельно с ЭДС.б) внутреннее сопротивление равно нулю.
- в) внутреннее сопротивление подключается последовательно с ЭДСи не равно нулю.
- нулю г) внутреннее сопротивление подключается параллельно с ЭДС и неравно

Вопрос 6. Закон Ома записывается в виде:

a) I=U/R.

- σ U=R/I.
- I=U*R.
- Γ) U=I/R

Вопрос 7. Определите сопротивление нити электрической лампымощностью 100 Вт, если лампа рассчитана на напряжение 10 В:

- a) 1 Ом.
- б) 10 Ом.
- в) 100 Ом.
- г) 1000 Ом

Вопрос 8. Закон Джоуля – Ленца:

- а) работа, производимая источникам, равна произведению ЭДСисточника на заряд, переносимый в цепи.
- б) определяет зависимость между ЭДС источника питания, с внутренним сопротивлением.
 - в) пропорционален сопротивлению проводника в контуре алгебраической суммы.
- г) количество теплоты, выделяющейся в проводнике при прохождении по нему электрического тока, равно произведению квадрата силы тока на сопротивление проводника и время прохождения тока через проводник

Вопрос 9. Устройство, состоящее из двух проводников любой формы, разделенных диэлектриком:

- а) электреты.
- б) источник.
- в) резисторы.
- г) конденсатор

Вопрос 10. Физическая величина, характеризующую быстроту совершения работы:

- а) работа.
- б) напряжения.

- в) мощность.
- г) сопротивления

Вопрос 11. Сила тока в электрической цепи 2A при напряжении наего концах 5 В. Найдите сопротивление проводника:

- a) 10 Ом.
- б) 0,4 Ом.
- в) 2,5 Ом.
- г) 4 Ом.

Вопрос 12. Ветвь - это:

- а) часть цепи между двумя узлами.
- б) замкнутая часть цепи.
- в) графическое изображение элементов.
- г) элемент электрической цепи, предназначенный для использование электрического сопротивления

Вопрос 13. При параллельном соединении конденсаторов.....=const:

- а) напряжение.
- б) заряд.
- в) емкость.
- г) сопротивление

Вопрос 14. Холостой ход – это:

- a) режим, при котором через источник или приемник не протекает ток.
- б) режим, в котором данный элемент работает при номинальных величинах.
- в) режим, возникающий при соединении между собой без какого- либо сопротивления зажимов элементов электрической цепи, между которыми имеется напряжение.
 - г) режим, при котором ничего не работает.

Вопрос 15. Ёмкость конденсатора C=10 мкФ, напряжение на обкладках U=220B. Определить заряд конденсатора:

- а) 2.2 Кл.
- б) 2.2 мКл.
- в) 22 мКл.
- г) 2200 Кл

Вопрос 16. Лампа накаливания с сопротивлением R= 440 Ом включена в сеть с напряжением U=110 В. Определить силу тока в лампе:

- a) 25 A.
- б) 2,5 A.
- в) 0,25 A.
- г) 0,025 A

Вопрос 17. В каких единицах измеряется проводимость:

- a) Вт.
- б) См.
- в) Гн.
- г) Ф

Вопрос 18. В цепи питания нагревательного прибора, включенногопод напряжение 220 В, сила тока 5 А. Определить мощность прибора:

- a) 25 BT.
- б) 1,1 кВт.
- в) 2,1 кВт.
- г) 4,4 Вт

Вопрос 19. Какие из выражений является формулировками

первого закона Кирхгофа:

- а) алгебраическая сумма ЭДС в любом контуре цепи равна алгебраической сумме напряжений на элементах этого контура.
 - б) сумма токов, входящих в узел, рана сумме токов, выходящих из него.
- в) сумма выработанной энергии в цепи равна сумме потребленной энергии.

Вопрос 20. Для узла А справедливо выражение:

- a) I1+I2+I3=0.
- б) I1-I2+I3=0.
- в) I1+I2-I3=0.
- г) I1-I2-I3=0

Вопрос 21. Для первого контура справедливо выражение:

- a) I1 R1 + I2 R2 = E1 + E2.
- 6) I1 R1 I2 R2 = E1 + E2.
- B) I1 R1 + I2 R2 = E1 E2.
- r) I1 R1 I2 R2 =E1 E2

Вопрос 22. Для второго контура справедливо выражение:

- a) I2 R2 + I3 R3 = E2 + E3.
- б) I2 R2 I3 R3 =E2 + E3.
- B) I2 R2 I3 R3 = -E2 + E3.
- г) I2 R2 I3 R3 =-E2 E3

Ответы на тест:
$$1-B$$
, $2-\Gamma$, $3-B$, $4-\Gamma$, $5-B$, $6-a$, $7-a$, $8-\Gamma$, $9-\Gamma$, $10-B$, $11-B$, $12-a$, $13-a$, $14-a$, $15-б$, $16-B$, $17-б$, $18-б$, $19-б$, $20-\Gamma$, $21-B$, $22-\Gamma$